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In contrast to the large number of methods of calculating the turbulent boundary layer 
at a smooth surface, the number of known methods of calculating flow over rough surfaces is 
quite small. At that, they are practically all confined to the case of sand-grain roughness 
and make it possible to calculate the coefficient of surface friction only for the regime 
of developed roughness in the absence of a pressure gradient. This situation is connected 
with the great variety of geometrical forms of roughness and of the means of its distribution 
over a surface, which makes it difficult to model flow in the vicinity of roughness elements. 

In such a case the method of relative correspondence [i] has a definite advantage over 
other approaches to the solution of the problem. The use of such an approach to the solu- 
tion problem under consideration makes it possible to extend to the case of surface rough- 
ness thepossibilities of calculating the turbulent boundary layer �9 asymptotic rela- 
tive laws [2]. 

w We introduce the quantity Tr = (efr/Cfs)Res, which represents the relative change 
in the coefficient of friction of a surface owing to the roughness. Here the comparison of 
the coefficients of friction Cfr and Cfs at rough and smooth surfaces is made for identical 
external conditions with the same Reynolds number Re 8 = PeSUe/Bw, where 8 is the thickness 
of momentum loss; 0, u, and M are the density, velocity, and dynamic viscosity of the gas 
stream, respectively. Such a choice ofthe comparison parameter follows from the algorithm, 
which is general for the theory of relative laws of friction [2], for the solution of the 
problem when the coefficient of friction of the "standard" surface is calculated at the same 
value of Re 8 which is obtained from the integral momentum equation for the "perturbed" state 
of the surface. Here and later the index e pertains to parameters at the external limit of 
the boundary layer, w to parameters at the wall, ~ to parameters at a thermally insulated 
wall, 1 to parameters at the boundary of the viscous sublayer, s to parameters at a smooth 
surface, r to parameters at a rough wall, and k to parameters at the line of the tops of the 
roughness elements. 

We obtain the expression for Tr by using a two-layer model for the turbulent boundary 
layer with the following assumptions: 

I. The effect of the longitudinal pressure gradient on the friction at both a smooth 
and a rough surface is taken into account only through the integral momentum equation, while 
the direct effect of the pressure gradient on the velocity profile is neglected. As is known, 
this assumption is approximately correct for flows with negative and moderately positive 
pressure gradients. 

2. The velocity profile in the viscous sublayer is determined from the equation T = 
Pwdu/dy = Tw, where T w = PwU~ cffleU$/2 is the frictional stress at the wall; u, is the 
dynamic velocity. From this we have the velocity profile in the viscous sublayer 

u +  = y +  fo, y+<y~; (i.i) 

where y+ = yu,/9 w is the distance from the wall; u + = u/u, is the velocity in the variables 
of the wall law; ~ is the kinematic viscosity of the gas. 

The thickness Y~s = YlsU*/gw of the viscous sublayer at a smooth surface is assumed to 
be the same as in a nongradient stream of incompressible liquid: Y~s = 11.6. In the case of 
a rough surface the dependence of the thickness of the viscous sublayer on the height k + = 
ku,/~ w of the roughness protuberances (k is the geometrical height) and on their shape is 
obtained below. 
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3. In tlhe turbulent core of the boundary layer (over its entire thickness) we adopt the 
following distributions of the shear stress T and the mixing length l, which are valid only 
in the region near the wall: 

pl 2 [ du ]e 
~ =  k ~ ]  = ~ '  ~=• (1.2) 

where x = 0.4 i s  the t u r b u l e n c e  c o n s t a n t .  

We integrate (1.2) within the limits of the turbulent core, using a modified Crocco inte- 
gral for the density distribution 

p~/p = i--~u-- ~u 2. (1.3) 

Here u = u/~; a = i-- Taw/Tw is the heat-transfer factor; Taw = T e [i + r((y -- I)/2)M~] is 
the temperature of the thermally insulated surface; r is the coefficient of restoration; y is 
the ratio of specific heat capacities; M is the Mach number; 8 = r[(y --!)/2]M~(Te/Tw). 

Using (:[.2) and (1.3) we obtain the profile in the form of the velocity defect, indepen- 
dent of the state of the surface: 

u2 ( 2 ~ + a  2 ~ + ~  h i In t for ~ m i n ,  (1.4) V--~ arcsin ? ~ 7 ~  arcsin ] / ~ /  = 

i 
where ~ = y/,5; $ is the thickness of the boundary'layer; u~ = Ue/U, = ~(2/cf)(pw/Pe ) is the 
friction parameter. 

The lower boundary of applicability of the profile (1.4) in the case of a smooth surface 
is the boundary Ymins = Y~s of the viscous sublayer. For a rough surface such a situation 
(Ymin = Yl) is retained only so long as the roughness elements are submerged in the viscous 
sublayer. But if k [ y,, then the line of the tops of the roughness elements must be taken 
as the lower boundary, Ymin = k. Using these considerations and being confined to the first 
term in the arcsin expansion by powers of the argument, from (1.4) we obtain the expression 
for ~r: 

a 2 + 4fi 

where, as discussed above, 

u+in= Umi n=lu + for Y1~>k 
u, [U~ + for k ~ Yl, 

in ~ls ]2  

In gmin] 
./Reo 

~min--= for k ~ g l  

(1.5) 

Let us convert (1.5) to a form which does not depend explicitly on the relationship be- 
tween k and Yl. For this purpose we write the velocity profile in the core of the layer in 
the form of the wall law 
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�9 2137+ u+ (arcsm--------- + '  a I= l ay  -r-C--ql)(k+,O' l ,O'~, . . ) ,  ( 1 .6 )  arcsin i ~  / 

where C = 5.5 is the ifitegration constant; r +, 0,, ~=, ...) is the roughness function (r = 
0 for hydraulically smooth flows); c,, c= .... are parameters characterizing the shape and 
distribution of the roughness elements. The form of the function #(k +) for the case of sandy 
roughness is presented in Fig. la. The effect of the density of the distribution of other 
forms of uniform roughness over the surface (two-dimensional elements, elements with a "regu- 
lar" geometry, etc.) on the behavior of the function #(k +, c,, at, ...) has been studied in 
a number of experimental reports and has recently been generalized in the form of a unified 
correlation function [3]. 

From the experimental results of [4, 5], obtained with a zero pressure gradient, it fol- 
lows that in both the compressible adiabatic case and for flow with heat transfer the func- 
tion r +, c~,~=, ...) retains the same form as in an incompressible stream. The experiments 
of [6], conducted in an incompressible stream, showed that the roughness function also remains 
unchanged in the presence of a moderate positive pressure gradient. In such a case it is rea- 
sonable to make another assumption. 

4. The form of the roughness function #(k +, ~z, c=, ...) is invariant relative co the 
total action of the perturbing factors (compressibility, heat exchange, pressure gradient). 

Let us join the velocity distribution (i.I) in the viscous sublayer with the distribu- 
tion (1.6) in which, as before, we are confined to only the first term of the arcsin expan- 
sion by powers of the argument. As a result~ we obtain the dependence of the thickness y+ 
of the viscous sublayer on the height k + of the roughness 

V 4fi t l n y ~ _ C _ d D ( k + , ~ l , o . , , .  . ) .  ( 1 . 7 )  Y+ ~'~ T 4fi :z 

In Fig. lb this dependence is presented in explicit form for the case of an adiabatic 
surface covered by sandy roughness. Since the possibility of using the two-layer model is 
limited below by the Value y~ = i/x, here the degeneration of the viscous sublayer is traced 
only to the value k + -" 35. It is well known, however, that the regime of developed rough- 
ness corresponding to complete degeneration of the viscous sublayer sets in at k + = 70 for 

this type of roughness. 

It is seen that Eq. (1.7) is connected with the expression for the numerator of (1.5) 
and that for its denominator in the case when y+, > k+,. But if k + --> y+ then the velocity 
U~n = u~ can be obtained in a first approximation by extrapolating the velocity distribu- 
tion (1.6) down to y+ = k +, which reduces the denominator in (1.5) to the same form: 

" = 8 +  c- o(k ). V-~--~+ 4~ l n ( ~ ) I n  q- . . .  

Finally, for ~r we have 

~ r =  \ ~ C + ~ n S + ~ ( - - ~ , ~ , ~ ,  . . . .  ) ~o" (1.8)  
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The roughness of a surface is assigned, as a rule, through the quantity Re k = kue/V e. 
In such a case the parameters entering into (1.8) are represented in the form 

k + = (1.9) 

i 
- 

8 u(i--u du if one uses the velocity pro- An expression can be obtained for ~-= -~ 

0 

file (1.4) over the entire thickness of the boundary layer and not only in its core (the er- 
ror from such an approximation is slight for large values of the friction parameter Ue+): 

l ( ! ' -5- = - - ~  a rcs in  . . . .  ]d :  

To c a l c u l a t e  t h e  i n t e g r a l  e n t e r i n g  i n t o  ( 1 . 1 0 )  we u s e  t h e  f a c t  t h a t  u + >> i .  I n  t h i s  
case the integral can be represented in the form of an alternating-sign asymptotic series by 
powers of (XU+e) -z, obtained as a result of integration by parts. Being confined to the first 
two terms of the series, we have a single expression for 8/~ for smooth and rough surfaces: 

o y - i - ~ - - ~ _ ~  2 - ' T + ~  l c I ~ , T~ 
-f- v- 1' 

Here an(: in (1.9) cf = Cfs for a smooth surface and cf = Cfr = ~rCfs for a rough surface, 
with the values of ~r and Cfs being calculated at the same value of Re 8 = idem. It should 
be noted that: at cf = Cfmax = 2(• --e/2 + B)) = the expression (i.ii) reaches its 
maximum and with a further increase in cf it begins to decline, which does not correspond to 
reality. Therefore, for the ratio fl/~ in the case when cf > Cfmax one must use its maximum 
value (8/~)ma x = Te/4Tw(2-- ~/2 + B). 

w The calculation of the frictional resistanee in each concrete case is connected, ac- 
cording to the ideas of the method of [2], with the integration of the momentum equation. In 
the process the functions Pf, ~M, and ~t obtained in [2] are used to allow for the pressure 
gradient, the compressibility, and the nonadiabaticity of the flow, while the function ~r of 
the roughnes,; effect is calculated from (1.8) at each step of integration by the method of 
successive approximations, where ~r = I is taken as the zeroth approximation. The iteration 
process conw:rges rapidly; for example, in the determination of the coefficient of friction 
Cfr with 1% accuracy the calculation time for one variant on a BESM-6 was ~I sec. Using 
(1.8), one c~m find that the condition of convergence of the process is a reasonable ratio 
between the size of the integration step and the height of the roughness protuberances. In 
the general c.ase this condition has an extremely cumbersome form, but as a provisional value 
we give the following: ks/Ax < 5, where Ax is the integration step and k s is the height of 
the equivalent sandy roughness. 

The coefficient of local friction was calculated in accordance with the expression Cfr = 
~rCfs, where Cfs = ~M~tPfCfo, where the power-law approximation Cfo -- BReam was used for the 
law of friction under "standard" conditions (m = 0.25 and B = 0.0256 for Refl < 3 �9 I03; m = 
1/6 and B = 0.0131 for le0 > 3 �9 i03). 
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A comparison between calculations made by the prqposed method and the results of measure- 
ments of the local and average coefficients of friction cf and c F for several forms of uniform 
roughness is shown in Figs. 2-5 (the form is shown in Figs. 3 and 5). As the roughness func- 
tion in the calculations we used functions determined in the respective experiments; in all 
cases they agree well with the correlation equation [3]. In this case, in accordance with 
assumption 4, to make the calculations it is sufficient to know the behavior of the func- 
tion #(k +, ci, 02, ...) for arbitrary external conditions. 

The results of the calculation of the average coefficient of friction of a plate with 
sandy roughness in an incompressible stream are presented in Fig. 2 (solid lines). The de- 
pendences obtained by Prandtl and Schlichting [7] through recalculation to the case of a plate 
of the results of Nikuradze on the measurement of the resistance of pipes with sandy rough- 
ness are plotted with dashed lines. For the family of curves with the parameter L/k theagree- 
ment of the results lies within the limits of accuracy of the calculation. Concerning the 
disagreement in the behavior of the curves with the parameter Re k = kue/V , it should be noted 
that the families with the parameters L/k and Re k presented in [7] do not correlate with each 
other in the region of difference of the methods being compared. In fact, at the point of 
intersection of the two curves with the parameters (L/k) i and Re k ~ = (kue/Ve) j the equality 
(L/k)iRek, j = Re i ~ should be satisfied, where Re i ~ = (ueL/Ve)i,~Jis the Reyn61ds number at 

,n ,4 
which this intersection occurs. It is seen that thms condition is not observed for the dashed 
lines. As for the behavior of the curves for the local coefficient of friction (graph not 
presented), here complete agreement with the calculations of Prandtl and Schlichting is ob- 
Served, with both families in [7] correlating with each other this time. 

A comparison with the experimental data of [6], obtained in an incompressible stream 
with a pressure gradient (the velocity of the outer stream at the initial cross section x/L = 
0.25 equals u~ = 33.53 m/sec) for a plate (L = 6.096 m) covered by two-dimensional roughness 
(strips of square cross section with a side k = L/1920 arranged across the stream with a spac- 
ing X = 4k) is presented in Fig. 3. 

A comparison with the results of measurements of the local and average coefficients of 
friction cf and c F [4] in a compressible gas stream at a thermally insulated plate with sandy 
roughness is presented in Fig. 4a, b (M e = 2 and 2.23, respectively). 

The results of a Calculation of the friction in a compressible stream (M e = 4.93) at a 
plate (L = 0.317 m) with heat exchange are compared in Fig. 5 with the experimental data of 
[5]. The roughness consists of V-shaped grooves with an angle of 90 = at the top and oriented 
perpendicular to the stream. The heat transfer was provided through variation of the stream 
temperature (the plate temperature was kept equal to Tw = 305~ so that the heat-transfer 
factor was uniquely connected with the Reynolds number (Tw/Taw = 0.55-1). 

In all the cases presented above the departure of the calculated values of the coeffi- 
cients of friction from the experimental values lies within the limits of the experimental 
accuracy (does not exceed 10%). It should be noted that the accuracy of the method cannot 
be estimated in advance for flow conditions not testedexperimentally. 

The author thanks E. G. Zaulichnyi for attention to the work and useful discussions 
and V. Ya. Ivanov for help in making the calculations and valuable comments. 
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ANALYSIS OF THE SOUND FIELD OF A LARGE SPAN OSCILLATING 

BODY OF REVOLUTION 

D. N. Gorelov UDC 5 34.2 31 

The theoretical investigation of the spatial sound field produced by an oscillating body 
of nonzero thickness is a complex problem which has been solved in practice only for a 
sphere [I]. 

In this paper an approximate method is proposed for the analysis of the spatial sound 
field produced by a slender body of revolution with an arbitrary law of its surface oscilla- 
tion. The solution obtained can be applied to the analysis of the near sound field and the 
apparent masses of bodies of revolution oscillating in a compressible fluid. 

Let us consider the problem of oscillations of a body of revolution in an ideal com- 
pressible fluid, which is at rest infinitely far from the body. Let us introduce the Oxyz 
Cartesian coordinate system in which the Ox axis is directed along the axis of body symmetry 
and the origin is at its midsection (see Fig. i). 

Let S be the surface of the undeformed body, r = y~ + z 2, r = R(x) is the equation of 
the generator of the body of revolution, Ro = R(O), I is half the length of the body, X = 
I/P~ is the span of the body, m is the angular frequency of body oscillation, t is the time, 
8 = arctan(z/y), w(x, 8, t) is the displacement of the body surface along the normal to S, a 
is the speed of sound in the fluid at rest, and ~(x, y, z, t) is the velocity potential. 

Let us also assume that 

~>>t ,  d R / d x N R o / l ;  (1) 

lwl<<R0, Ow/Ox~A/l  (A = maxlwt). (2) 

The assumpt ions  (1) and (2) pe rmi t  the  i n t r o d u c t i o n  o f  two smal l  pa ramete r s  in to  the 
considerations: 

el = Ro/l, ~ = A/Ro. 

Let us go over to dimensionless coordinates x, y, z and functions r, R referred to Ro by 
retaining their previous notation. Assuming that the body oscillates according to a given 
harmonic law for an infinitely long time, we represent the function w and the velocity poten- 
tial ~ in the form 

w(x, O, t) = A Re{W(x, O)ei~t}; (3) 

~(x, y, z, t ) =  aR o Re{~(x, y, z)ei~t}. 
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